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GENERALIZED INVERSE

We now consider generalized inverses of those matrices that do not have inverses in
the usual sense [see (2.45)]. A solution of a consistent system of equations Ax = ¢
can be expressed in terms of a generalized inverse of A.

Definition and Properties

A generalized inverse of an n x p matrix A is any matrix A~ that satisfies
AA A=A (2.58)

A generalized inverse is not unique except when A is nonsingular, in which case
A~ = A !, A generalized inverse is also called a conditional inverse.

Every matrix, whether square or rectangular. has a generalized inverse. This holds
even for vectors. For example, let

o b9 —

=

Then x;” = (1,0.0.0) is a generalized inverse of x satisfying (2.58). Other examples
are X; = (0. 3.0.0). x5y = (0.0, 4.0). and x; =(0.0.0. }). For each x; . we have

xx; x=xl=x, i=1234.
In this illustration, x is a column vector and x; is a row vector. This pattern is

generalized in the following theorem.

Theorem 2.8a. If A is n x p. any generalized inverse A is p X n. O

In the following example we give two illustrations of generalized inverses of a
singular matrix.
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Theorem 2.8b. Suppose A is n x p of rank r and that A is partitioned as

A Ap
A= =0,
(Azl Az:)

where A;, is r x r of rank r. Then a generalized inverse of A is given by

-1
A== a0
O O
where the three O matrices are of appropriate sizes so that A~ is p x n.

Corollary 1. Suppose that A is n x p of rank r and that A is partitioned as in
Theorem 2.8b, where A, is r x r of rank r. Then a generalized inverse of A is

given by
- 0O O
i (0 Ay )

where the three O matrices are of appropriate sizes so that A~ is p x n. ]

Theorem 2.8¢c. Let Aben x pofrank r.let A~ be any generalized inverse of A, and
let (A'A)” be any generalized inverse of A’A. Then

(i) rank(A~ A) = rank(AA ) = rank(A) = r.
(i) (A7) is a generalized inverse of A'; that is, (A")” = (A 7).
(iii) A= AA'A) A’A and A" = A'A(A'A) A"
(iv) (A’A) A’ is a generalized inverse of A: that is, A~ = (A’A)"A’.

(v) A(A’A)" A’ is symmetric, has rank = r. and is invariant to the choice of
(A’A) " : that is, A(A’A)" A’ remains the same. no matter what value of
(A'A) " is used. O
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Theorem 2.8d. If the system of equations Ax = ¢ is consistent and if A~ is any
generalized inverse for A, then x = A ¢ Is a solution.

Proor. Since AA A = A, we have
AA AxX = Ax.
Substituting Ax = ¢ on both sides, we obtain
AA"c=c

Writing this in the form A(A ¢) = ¢, we see that A ¢ is a solution to Ax =¢. [J
Different choices of A~ will result in different solutions for Ax = ¢.

Theorem 2.8e. If the system of equations Ax = ¢ is consistent, then all possible sol-
utions can be obtained in the following two ways:

(i) Use a specific A~ inx = A ¢+ (I — A" A)h. and use all possible values of
the arbitrary vector h.
(ii) Use all possible valuesof A" inx=A"¢if ¢ # 0.

Theorem 2.8f. The system of equations Ax = ¢ has a solution if and only if for any
generalized inverse A~ of A

AA ¢=c.

IDEMPOTENT MATRICES

: . . . Y.
A square matrix A is said to be idempotent if A~ = A.
Theorem 2.13a. The only nonsingular idempotent matrix is the identity matrix L.

Theorem 2.13b. If A is singular, symmetric, and idempotent, then A is positive
semidefinite.

Theorem 2.13¢. If A is an i x n symmetric idempotent matrix of rank r, then A has
reigenvalues equal to 1 and n — r eigenvalues equal to 0.

www.deepinstitute.co.in , CO.NO.- 9560402898, 9999001310, 011-47511310 Page 3



DEEP INSTITUTE (DELHI)COACHING FOR I.S.S. BY SUDHIR SIR

Theorem 2.13d. If A is symmetric and idempotent of rank r. then rank(A) =
ir(A)=r.
|

Theorem 2.13e. If A is an n x n idempotent matrix, P is an n x n nonsingular
matrix, and C is an n x n orthogonal matrix, then

(i) I — A is idempotent.
(i) A—A)=0and (I1-A)A=0.
(iii) P"YAP is idempotent.
(iv) C'AC is idempotent. (If A is symmetric. C'AC is a symmetric idempotent
matrix.) O

Theorem 2.13f. Let A be n x p of rank r, let A~ be any generalized inverse of A,
and let (A'A)" be any generalized inverse of A’A. Then A A AA ., and
A(A'A)” A’ are all idempotent. g

Theorem 2.13g. Suppose that the n % n symmetric matrix A can be written as
k . ; : .

A=) A for some k, where each A, is an n x n symmetric matrix. Then any

two of the following conditions implies the third condition.

(i) A is idempotent.
(i) Each of A, As, . ... Ay is idempotent.

(iii) AjA;j = O fori # j. -

I'heorem 2.13h. I = Zi ; Ai. where each n x n matrix A; is symmetric of rank r;,
and if n = Ef , 7i. then both of the following are true:

(1) Each of Ay, As,.... Ay is idempotent.
(11) .A,‘.‘\' =0 for: ok f
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Derivatives of Functions of Vectors and Matrices

Let « = f(x) be a function of the variables xj,x2....,x, In X = (x.x,. .. .. X ), and
let du/dxy. du/dxs, . ... 0u/dx, be the partial derivatives. We define du/dx as
( it \
(").\']
e
ox )
ut
\U.\'p

Two specific functions of interest are u = a’'x and « = x"Ax. Their derivatives with
respect to x are given in the following two theorems.

Theorem 2.14a. Let u = a'x = x'a, where a' = (ay.as. . ... ay) is a vector of con-
stants. Then

P o Y 3 P
f_)l:‘)(_“ .\):f)f:\‘d):a (2.112)
Ox Ox x

Theorem 2.14b. Let « = x’Ax, where A is a symmetric matrix of constants. Then

du X AX)
X Ox

= 2Ax. (2.113)

Theorem 2.14¢. Let v = tr{XA), where X is a p x p positive definite matrix and A is
a p x p matrix of constants. Then
du  Jr(XA)] -
—=————=A+A —diagA. (2.115)
IX X -
Theorem 2.14d. Let u = In |X| where X is a p x p positive definite matrix. Then
A 1n [X|
X

=2X"' — diag(X ). (2.116)
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Simple Linear Regression

6.1 THE MODEL
By (1.1). the simple linear regression model for n observations can be written as
vi=Bo+Bxit+es i=12.. . (6.1)

The designation simple indicates that there is only one x to predict the response v, and
linear means that the model (6.1) is linear in By and B,. [Actually, it is the assumption
E( v;) = By + B;x; that is linear; see assumption 1 below.] For example, a model such
asyi = By + Bl.rf + & is linear in B, and B,, whereas the model y; = B, + ¢# + &
is not linear.

In this chapter, we assume that y; and g; are random variables and that the values of
x; are known constants, which means that the same values of x;, x>, ... .x, would be
used in repeated sampling. The case in which the x variables are random variables is
treated in Chapter 10.

To complete the model in (6.1), we make the following additional assumptions:

1. E(e))=0foralli=1,2,..., n., or, equivalently, E(yv;) = By + B.vi.
2. var(g;) = o~ forall i = 1, 2,...,a or, equivalently, var(y;) = o=,

3. covie;, &) =0 for all i 5 j, or, equivalently, cov( y;, y;) = 0.

Assumption [ states that the model (6.1) is correct, implying that y; depends only on x;
and that all other variation in y; is random. Assumption 2 asserts that the variance of &
or y does not depend on the values of x;. (Assumption 2 is also known as the assump-
tion of homoscedasticity, homogeneous variance or constant variance.) Under
assumption 3, the & variables (or the v variables) are uncorrelated with each other.
In Section 6.3, we will add a normality assumption. and the y (or the &) variables
will thereby be independent as well as uncorrelated. Each assumption has been
stated in terms of the &£'s or the v's. For example. if var(g;) = o2, then
var(v;) = E[vi — E(y))* = E(y; — Bo = B,.\',-)2 = E(Sf} = o
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6.2 ESTIMATION OF B, Bi. AND o>

Using a random sample of n observations vy. va, .... v, and the accompanying fixed
. 2 .
values x|, 15, ... .x,, we can estimate the parameters By. 8. and o ~. To obtain the

estimates B() and ,B,. we use the method of least squares. which does not require
any distributional assumptions (for maximum likelihood estimators based on normal-
ity. see Section 7.6.2).

In the least-squares approach. we seek estimators B, and B, that minimize the sum
of squares of the deviations v; —v; of the n observed y;’s from their predicted
values ¥; = By + Bixit

n n n
.‘."t = Z S? — Z (Vi — _‘;';)2 = Z (¥ — Bﬂ — ﬁ].l’;]z. (6.2)
=1 i=l1

i=1

Note that the predicted value y; estimates E(y;). not v; that is, E(, + ﬁ,.r, estimates
Bo + Byxi.not By + Byx; -+ &;. Abetter notation would be E( y;), but y; is commonly used.

To find the values of B, and B, that minimize €€ in (6.2), we differentiate with
respect 0 By and B and set the results equal to 0:

.-}{-'_p~
: Z(\, Bo — Bixi) = 0, (6.3)
()B(J i=1
DE'e

Z“: By — Bixini = 0. (6.4)
()Bl i=1

The solution to (6.3) and (6.4) is given by

n n
- . Xp¥p — Xy 0 — Xy — ¥
Bl __ lel B ’,,\- — Zl—l 4 )( ! = ) . (().5)

2 2 n : 2
Zlil .l,’ — NX Zl=| [‘-; - .\;

Bu == Bli'- (6.0)

|
Note that the three assumptions in Section 6.1 were not used in deriving the least-
squares estimators B, and B, in (6.5) and (6.6). It is not necessary that ¥; = B, + B,x;
be based on E( y;) = By + Byi: that is. v; = By + Byxi can be fit to a set of data for
which E(y;) # By + Byxi. This is illustrated in Figure 6.2, where a straight line has
been fitted to curved data.
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However, if the three assumptions in Section 6.1 hold, then the least-squares esti-
mators 3, and B; are unbiased and have minimum variance among all linear unbiased

E(B) =By (6
E(By) = Bo (6.8)

\ a
\311'(81 , — —_— (_(1."))

3
Y e O —E)

; »[1 S
\'llr(ﬁn)z 0-— __{_;. 5 (61(”
I

— Y
Z:Ll (.\"; —_ .\')ﬁ

Note that in discussing E(B;) and vur(ﬁl ). for example, we are considering
random variation of B] from sample to sample. It is assumed that the n values x|,
X i nyy v, would remain the same in future samples so that var(B,) and var( Bn)
are constant.

In (6.9). we see that var(f8,) is minimized when o = )% is maximized. If
the x; values have the range a < x; < b. then Z:-'_l (x; — ¥)* is maximized if half
the x’s are selected equal to @ and half equal to b (assuming that n is even: see
Problem 6.4). In (6.10), it is clear that vur(BU) is minimized when v = (.

The method of least squares does not yield an estimator of var(y;) = o; minimiz-
ation of &' yields only B, and B,. To estimate o>, we use the definition in (3.6).
o2 = Ely; —E(’_\';_’)]z. By assumption 2 in Section 6.1, o2 is the same for each
vioi=1,2, ... .n. Using ¥; as an estimator of E(v;). we estimate ¢~ by an average
from the sample, that is

7 & Yo O — 3 L > v — Bo— Byxi)? _ SSE

n—2 n—2 n—2

s (6.11)

where B(, and Bl are given by (6.5) and (6.6) and SSE = > . (v; — ¥; )*. The deviation
g = v; — v; is often called the residual of v;, and SSE is called the residual sum of
squares or error sum of squares. With n—2 in the denominator, s~ is an unbiased
estimator of o

.. ESSE) (n—2)c? ,
Bls?)= = =0’ (6.12)

n—2 n—2
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Intuitively, we divide by n—2 in (6.11) instead of n—1 as in

) . = A - - .
2= 3 (vi —¥)7/(n — 1) in (5.6), because v; = B + Byxi has two estimated para-
meters and should thereby be a better estimator of E(y;) than ¥. Thus we

expect SSE = 37, (v; — ¥:)* to be less than 3~ (v; — ¥)°. In fact, using (6.5) and (6.6),
we can write the numerator of (6.11) in the form

n n n o, o AT
SSE 2 Z (3= ‘;.E)E o Z (v — T\'F ) [Zizl X =)0 =) )] ] (6.13)

. 4 & 3 7 4 s47
i=1 =1 2imt i = %)

2

which shows that > . (vi — y; ) is indeed smaller than > i =

6.3 HYPOTHESIS TEST AND CONFIDENCE INTERVAL FOR g,

Typically, hypotheses about B, are of more interest than hypotheses about By, since
our first priority is to determine whether there is a linear relationship between y and x.
(See Problem 6.9 for a test and confidence interval for B,.) In this section, we con-
sider the hypothesis Hy: B = 0., which states that there is no linear relationship
between y and x in the model y; = B, + B,x; + &;. The hypothesis Hy:8, = ¢ (for
¢ # 0)is of less interest.

In order to obtain a test for Hy: B, = 0. we assume that v; is N(SBy + Byxi. a).
Then B, and s* have the following properties (these are special cases of results estab-
lished in Theorem 7.6b in Section 7.6.3):

. BiisN[By, a2/ 3 (i — 0],

. (n—=2)s%/a? is ¥ (n—2).

N

. B, and s7 are independent.

From these three properties it follows by (5.29) that

(6.14)

_ By
[ .v/\/ il —%)?

is distributed as t(n—2. 8). the noncentral ¢ with noncentrality parameter 8.

By a comment following (5.29). & is given by &= E(B,)/ vur(B,,}

= B,/lo/y\/ 2 (xi = I B, =0, then by (5.28), ¢ is distributed as r(n—2). For
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a two-sided alternative hypothesis Hy: B, # 0. we reject Hy: B, =0 if
|t] = taj2, n—2. Where 1,5 ,,_5 is the upper a/2 percentage point of the central  distri-
bution and « is the desired significance level of the test (probability of rejecting Hy
when it is true). Alternatively, we reject Hy if p <ea. where p is the p value. Fora two-
sided test, the p value is defined as twice the probability that 1(n —2) exceeds the
absolute value of the observed 1.

A 100(1 — @)% conlidence interval for 3, is given by

(6.15)

B] o2 b /2, n=2

Confidence intervals are defined and discussed further in Section 8.6. A confidence
interval for E(y) and a prediction interval for y are also given in Section 8.6.

6.4 COEFFICIENT OF DETERMINATION

The coefficient of determination r= is defined as

5 SSR YT (3 —y)
SST Y™ (=9

i=1

(6.16)

where SSR = >, (v; — ¥ )? is the regression sum of squares and SST = > 00— ¥)?
is the total sum of squares. The total sum of squares can be partitioned into SST =
SSR + SSE. that is,

Z (v; — ¥)F = Z =57+ Z (v; — vi)2. (6.17)
i=l i=1 i=1

Thus ~ in (6.16) gives the proportion of variation in y that is explained by the
model or, equivalently, accounted for by regression on .x.

We have labeled (6.16) as r~ because it is the same as the square of the sample
correlation coefficient r between y and x

LS Y i1 =i =)

\/":“\2 \/[ZLI (o = XP] [Z i — 9]

(6.18)

where s,, is given by 5.15 (see Problem 6.11). When x is a random variable, r
. - . . . - o . ~ . . 2 .
estimates the population correlation in (3.19). The coelficient of determination »~ is

discussed further in Sections 7.7. 10.4. and 10.5.
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Multiple Regression: Estimation

The multiple linear regression model, as introduced in Section 1.2, can be
expressed as

y=Bo+ Bix1 + Baxz + -+ + By +e&. (7.1)

We discuss estimation of the B8 parameters when the model is linear in the 8s. An
example of a model that is linear in the £°s but not the x’s is the second-order

response surface model
Y= BO = Bl.f[ -+ B}Y] + 33.\'% = Bq.\% = o Bﬁ.\].\"_’ i {72]

To estimate the B's in (7.1). we will use a sample of # observations on y and the
associated x variables. The model for the ith observation is

M= BO -+ ﬁ].\'“ -+ ﬁz.\'fz % e B.k\',‘,k -+ &, F= 12 . usile (7-“

The assumptions for g or y; are essentially the same as those for simple linear
regression in Section 6.1:

1. E(e)=0fori=1,2,..., n, or, equivalently, E(y;) = By + Bixit + Brxo +

“or = BiXi
2. var(g;) = o~ for i = 1.2.... n. or, equivalently, var(y,) = o~.
3. covig;. g;) =0 for all i # j. or. equivalently, cov(y; y;) = 0.

Assumption 1 states that the model is correct. in other words that all relevant x's are
included and the model is indeed linear. Assumption 2 asserts that the variance of y
is constant and therefore does not depend on the x’s. Assumption 3 states that the y’s
are uncorrelated with each other, which usually holds in a random sample (the
observations would typically be correlated in a time series or when repeated
measurements are made on a single plant or animal). Later we will add a normality
assumption (Section 7.6). under which the y variable will be independent as well as
uncorrelated.

When all three assumptions hold, the least-squares estimators of the B8’s have some
good properties (Section 7.3.2). If one or more assumptions do not hold, the estima-
tors may be poor. Under the normality assumption (Section 7.6), the maximum like-
lthood estimators have excellent properties.

www.deepinstitute.co.in , CO.NO.- 9560402898, 9999001310, 011-47511310 Page 11




DEEP INSTITUTE (DELHI)COACHING FOR I.S.S. BY SUDHIR SIR

Writing (7.3) for each of the n observations, we have

i = By + B + Byxia+ -+ Btk + &

ya = By + Bixa + Baxaa + ¢ -+ Brxa + £2

Ya = ]3() 8 7 ﬁ]-\'nl oy BZ-‘-H: + Yt Bk-\'nk + &p.
A AV LUVIE LT T _ A AN "N atW L. &=
These n equations can be written in matrix form as

¥ 1 x11 w2 ... X Bo £
y2 I xo X2 ... Xy B )
Vn I Xnl X2 I 1 S Bk Ey
or
y=XB+e (7.4)

The preceding three assumptions on g; or y; can be expressed in terms of the model in
(7.4):

I. E(e)=0or E(y)= Xp.
2. cov(&) = 0”1 or cov(y) = oL

Note that the assumption cov(g) = o1 includes both the previous assumptions
var(g;) = o= and cov(g;. &) = (.

The matrix X in (7.4) is n % (k + 1). In this chapter we assume that n > &k 4 1 and
rank (X) =k + L. If n <k + 1 orif there is a linear relationship among the x’s, for
example, x5 = Zj:l x;/4. then X will not have full column rank. If the values of the
X s are planned (chosen by the researcher), then the X matrix essentially contains the
experimental design and is sometimes called the design matrix.
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The B parameters in (7.1) or (7.4) are called regression coefficients. To emphasize
their collective effect, they are sometimes referred o as partial regression coeffi-
cients. The word partial carries both a mathematical and a statistical meaning.
Mathematically, the partial derivative of E(y) = By + Byx1 + Baxa + -+ + B
with respect to x;, for example, is 8. Thus 8, indicates the change in £(v) with a
unit increase in x; when x-, x3...... v, are held constant. Statistically, 8, shows the
effect of x; on E(v) in the presence of the other x’s. This effect would typically be
different from the effect of x; on E(y) if the other x’s were not present in the
model. Thus, for example, By and B, in

¥y =B+ B + B2 +e
will usually be different from B and By in
y= ﬁa -+ B].\‘[ + g,

[If x; and x» are orthogonal, that is, if X{x = 0 or if (x; — ¥,j)' (x5 — X2j) = 0, where
x; and X, are columns in the X matrix, then B, = B and B, = B): see Corollary I to
Theorem 7.9a and Theorem 7.10]. The change in parameters when an x is deleted
from the model is illustrated (with estimates) in the following example.
|
" M ~ 1 2
7.3 ESTIMATION OF g AND o~

7.3.1 Least-Squares Estimator for 8

In this section, we discuss the least-squares approach 1o estimation of the B's in the
fixed-x model (7.1) or (7.4). No distributional assumptions on y are required to obtain
the estimators.

For the parameters By, By. - . .. By, we seek estimators that minimize the sum of
squares of deviations of the n observed v's from their predicted values v. By extension

of (6.2), we seek Bn,Bl ..... Bk that minimize
n n
Zzl:,; = Z(_\',- Vi)
i=1 i=1
n ) i
= Z (vi =By —Bixit —Boxaa — -+ —Bv)’. (7.5)
i=1

Note that the predicted value v; =3, +B|-‘-'il + -+« +Bpxix estimates E(y;). not y;. A

better notation would be E(y;), but y; is commonly used.
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Theorem 7.3a. Iy =X + & where X is n x (k+ 1) of rank k + 1 < n. then the
value of B = (B,. By.. ... B) that minimizes (7.5) is

B = (X'X) 'Xy. (7.6)
. ________________________________________________________________________

7.3.2 Properties of the Least-Squares Estimator B

The least-squares estimator 8 = ( X'X)"'X’y in Theorem 7.3a was obtained without
using the assumptions E(y) = X8 and cov(y) = a1 given in Section 7.2, We merely
postulated a model y = XB + & as in (7.4) and fived i. If E(y) # XB. the model
v = XB + € could still be fitted to the data. in which case. 8 may have poor proper-
ties. If cov(y) # o°1. there may be additional adverse effects on the estimator .
However. if E(y) = X8 and cov(y) = ¢°I hold. B has some good properties. as
noted in the four theorems in this section. Note that B is a random vector (from
sample to sample). We discuss its mean vector and covanance matrix in this
section (with no distributional assumptions on y) and its distribution (assuming
that the y variables are normal) in Section 7.6.3. In the following theorems, we
assume that X is fixed (remains constant in repeated sampling) and full rank.

Theorem 7.3b. If E(y) = Xp. then B is an unbiased estimator for .
Proor .
E(B) = E[X'X) X'y
= (X'X)"'X'E(y)  [by (3.38)]

= (X'X) 'X'Xp
= B. (7.13)

_________________la s VYN[ L AV _— . ALl J
e . o) . " > e . Vi Py —
T'heorem 7.3¢. If cov(y) = o1, the covariance matrix for 8 is given by o (X'X) .

Proor _
cov(B) = cov[(X'X) 'X'y]
= (X'X) "X'covin)[(X'X)" 'X']  [by (3.44)]
= (X'X) "X (P DX(X'X)"!
= AX'X)'X'X(X'X) !
= *(X'X). (7.14)
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Thus
- 32 n : o’
var(By) = =—="1"—., var(B)) =——.
0 > (i — X l > — )
0]
: —0~X
coviBy. By) =

3o (x— 0

Theorem 7.3d (Gauss—Markov Theorem). If E(y) = X and cov(y) = &°1, the
least-squares estimators Bj J=0,1.....k have minimum variance among all
linear unbiased estimators.

The remarkable feature of the Gauss—Markov theorem is its distributional general-
ity. The result holds for any distribution of y: normality is not required. The only
assumptions used in the proof are E(y) = X8 and cov(y) = ¢~ L. If these assumptions
do not hold, B may be biased or each Bj may have a larger variance than that of some
other estimator.

The Gauss—Markov theorem is easily extended to a linear combination of the 8's,
as follows.

Corollary 1. If E(y)= X and cov(y) = o 1. the best linear unbiased estimator of
a'B is a’B. where B is the least—squares estimator g = (X'X)"'X'y.

A fourth property of B is as follows. The predicted value v = B,+
Bixi + 4 By = ﬂ’.\' is nvariant to simple linear changes of scale on the x's,
where x = (1, X3, X2, ....J vt). Let the rescaled variables be denoted by 7 = ¢jx;.
J= 12 ..., k. where the ¢; terms are constants. Thus x is transformed to
z={(1,c1x). .... cxxx). The following theorem shows that v based on z is the same
as v based on x.

Theorem 7.3e. If x =(l.x. ....x) and z=(l.c1x. ....qx) . then v=
B'x = B;z. where . is the least squares estimator from the regression of v on z.

Corollary 1. The predicted value y is invariant to a full-rank linear transformation on
the x's.

In addition to ¥. the sample variance s* (Section 7.3.3) is also invariant to changes
of scale on the x variable (see Problem 7.10). The following are invariant to changes
of scale on y as well as on the x’s (but not to a joint linear transformation on y and the
X's): 1 statistics (Section 8.5), F statistics (Chapter 8). and R (Sections 7.7 and 10.3).
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7.3.3 An Estimator for ¢

The method of least squares does not yield a function of the y and x values in the
sample that we can minimize to obtain an estimator of o. However. we can devise
an unbiased estimator for o~ based on the least-squares estimator 3. By assumption
2 following (7.3). o~ is the same foreach v;, i = 1.2, . ... n. By (3.6). o is defined by
o = Ely; — E(v;)]*. and by assumption 1, we obtain

f
E(yi) = Bo+ Bixin + Baxia + < - - + Brxik = X;B.
where %/ is the ith row of X. Thus ¢~ becomes

2 e AR
o = Ely; — x;BI°.
We estimate o~ by a corresponding average from the sample

7

| - o s
= =X B)". 7.22)
s n—k—l;("’ X8 ( )

where n is the sample size and & is the number of x’s. Note that. by the corollary to
Theorem 7.3d. x]B is the BLUE of x{p.
Using (7.7). we can write (7.22) as
I . :
s f=———(y— XP/(y - XP) (7.23)
n=k=1
_Vy—BXy_  SSE
T n—k—1  wa—k=1

(7.24)

where  SSE = (y — XB)Y(y — XB)=y'y—B'X'y.  With the denominator
n—k— 1. 5% is an unbiased estimator of ¢, as shown below.

Theorem 7.3f. If 57 is defined by (7.22). (7.23). or (7.24) and if E£(y) = X and
cov(y) = oL then

E(s%) = o™ (7.25)
Corollary 1. An unbiased estimator of CO\’(B) in (7.14) is given by
coviPB) = S2(X'X)7. (7.27)
Theorem 7.3g. If E(e) = 0. cov(e) = o°1, and E(e}) = 30" for the linear model

y =X+ &, then s2in (7.23) or (7.24) is the best (minimum variance) quadratic
. . . bl
unbiased estimator of .
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7.6 NORMAL MODEL

7.6.1 Assumptions

Thus far we have made no normality assumptions about the random variables
V. V2. oo .. Vp. To the assumptions in Section 7.2, we now add that

i 4 2 ’) . o)
VisNXB. o) or €gisNy(0. o~I).
L~V Y\111\] N J . ~ [\ /)11 /7
Under normality. a; = 0 implies that the y (or &) variables are independent. as well as
uncorrelated.

7.6.2 Maximum Likelihood Estimators for g and o

With the normality assumption, we can obtain maximum likelthood estimators. The
likelihood function is the joint density of the v's, which we denote by L(f. ). We
seek values of the unknown B8 and ¢~ that maximize L(B. o7) for the given vy and x
values in the sample.

[n the case of the normal density function, it is possible to find maximum likeli-
hood estimators 8 and ¢ by differentiation. Because the normal density involves a
product and an exponential, it is simpler to work with In L(B. o7). which achieves its
maximum for the same values of B and o~ as does L(B. o°).

The maximum likelihood estimators for B and o~ are given in the following
theorem.

Theorem 7.6a. If y is N,(XB. o?1). where X is n x (k + 1) of rank k + 1 < n, the
. . - - - 2
maximum likelithood estimators of B and o~ are

B=(XX)"Xy. (7.48)

] : " |
o =—(y - XB)(y—XB): (7.49)
I

N
The maximum likelihood estimator B in (7.48) is the same as the least-squares estima-

. - . -~ . s . . . . .
tor B in Theorem 7.3a. The estimator o= in (7.49) is biased since the denominator is n
3 - - . r ) - -
ather than n — k& — 1. We often use the unbiased estimator s~ given in (7.23) or (7.24).
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7.6.3 Properties of B and o2

- . . S ~ 2

We now consider some properties of 8 and ¢ (or s7) under the normal model. The
. . - ~ ~ Y . . - .

distributions of § and o~ are given in the following theorem.

Theorem 7.6b. Suppose that y is N, (XB. o°1). where X is n x (k + 1) of rank k +

Il <nand B=(By. By..-.. B;)'. Then the maximum likelihood estimators 8 and &2
given in Theorem 7.6a have the following distributional properties:

(i) Bis Newt B 2(X'X)™].
(ii) no? /o> is }(n — k — 1), or equivalently, (n —k — 1)s>/o” is Y (n — k — 1).
(iii) B and o> (or s7) are independent.

Another property of B and 2 under normality is that they are sufficient statistics.
Intuitively, a statistic is sufficient for a parameter if the statistic summarizes all the
information in the sample about the parameter. Sufficiency of B and @ can be estab-
lished by the Neyman factorization theorem [see Hogg and Craig (1995, p. 318) or
Graybill (1976, pp. 69-70)]. which states that B and ¢ are jointly sufficient for 8
and o if the density f(y;B.07) can be factored as [f(y: B.0%) =
.q(ﬂ. o>, B. a®)h(y), where h(y) does not depend on B or o". The following
theorem shows that 8 and &2 satisfy this criterion.

Theorem 7.6¢c. 11y is N,,(XB. o°1), then B and 2 are jointly sufficient for B and o
Note that 8 and &2 are jointly sufficient for Band o~ not independently sufficient:
that is, f(v: B. o*) does not factor into the form gl(ﬂ. B)ga(a, a2)h(y). Also note

that because s*> = né? /(n — k — 1). the proof to Theorem 7.6¢ can be easily modified
to show that 8 and s are also jointly sufficient for B and o~.

~— . , : 5 . $ .
Theorem 7.6d. If y is N,(XB, ¢”1). then B and s~ have minimum variance among all
unbiased estimators.

Corollary 1. If y is N,(X. °1). then the minimum variance unbiased estimator of
a’Bis a’B. where B is the maximum likelihood estimator given in (7.48). []
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7.7 R? IN FIXED-x REGRESSION

In (7.39). we have SSE = "7 | (v — PP — B\ X.y. Thus the corrected total sum of
squares SST =" (v; — ¥)% can be partitioned as
n

> (i =% = BiXly + SSE. (7.53)

i=1
SETM= S8R KSSE,
where SSR = B’IX:_.\’ is the regression sum of squares. From (7.37), we obtain

X'y = XX, and multiplying this by B} gives B\X.y = B/X/X.8,. Then
SSR = B/ X!y can be written as

SSR = B\X'X B, = (X8, (X.B,). (7.54)

In this form, it is clear that SSR is due to B, = (By. Ba.-. .. B
The proportion of the total sum of squares due to regression is

> BIXX.B, _ SSR

R = 3= . (7.55)
Y, (i—7° SST

which is known as the coefficient of determination or the squared multiple corre-
lation. The ratio in (7.55) is a measure of model fit and provides an indication of
how well the x's predict y.

The partitioning in (7.53) can be rewritten as the identity

n
~3 ) > 5 TP
Z(“}' — V) =¥y—nyv =(BXy -—m)+ 'y - BX'y)

P
= SSR + SSE.
which leads to an alternative expression for R*:

¥yt 2
> BXYy-—ny

R" (7.56)

vy — ny?
The positive square root R obtained from (7.55) or (7.56) is called the multiple cor-

relation coefficient. 1f the x variables were random, R would estimate a population
multiple correlation (see Section (10.4)).
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We list some properties of R” and R:

[. The range of R* is 0 < RE < 1. If all the Bj‘.s were zero. except for Bn. R?
would be 0. (This event has probability 0 for continuous data.) If all the
v values fell on the fitted surface, that is. if v; = ¥ i = 1. 2..... n then R’
would be 1.

R = ry;: that s, the multiple correlation is equal to the simple correlation [see
(6.18)] between the observed v;'s and the fitted y;’s.

[

i . 2 A 2
3. Adding a variable x to the model increases (cannot decrease) the value of R-,

4. If By =By =+--= By =0, then

E(R*) = (7.57)

n—1"

Note that the Bj's will not be 0 when the ;s are 0.

:Ja

R* cannot be partitioned into k components. each of which is uniquely attribu-
table to an x; wunless the x's are mutually orthogonal, that is,
Z:’_l (xjj — Xj) (Xgn — X)) = Ofor j # m.

6. R*is invariant to full-rank linear transformations on the x’s and to a scale change
on v (but not invariant to a joint linear transformation including v and the x’s).

In properties 3 and 4 we see that if & is a relatively large fraction of n. it is possible to
have a large value of R” that is not meaningful. In this case, x's that do not contribute
to predicting y may appear to do so in a particular example. and the estimated
regression equation may not be a useful estimator of the population model. To
correct for this tendency, an adjusted R”. denoted by R2. was proposed by Ezekiel
(1930). To obtain R%, we first subtract k/(n — 1) in (7.57) from R? in order to
correct for the bias when B, = B, =...= B, = (0. This correction, however,
would make R2 too small when the B's are large, so a further modification is made
so that R2 = 1 when R* = 1. Thus R: is defined as

R?‘:(RZ_"#] ) — ]):(rr— I}Rz—k.
“ n—k—1 n—k—1
|
Using (7.44) and (7.46). we can express R” in (7.55) in terms of sample variances
and covariances:

(7.58)

I wr ' J o—1 ~ ~—1 . J o—=1.
2 [3’] :\c‘\l‘ﬁi _ 5_\'.\'5‘1;\' (n—1) S-U'b.\:\' Sy _ 5_\'.! 5.\;\' Syx

!e- = 2 ¥ = (7.59)
D i i —¥)F S i —v)? 52
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7.8 GENERALIZED LEAST SQUARES: cov(Y) = o*V

We now consider models in which the y variables are correlated or have differing var-
iances, so that cov(y) # o~1. Insimple linear regression, larger values of x; may lead to
larger values of var( y;). In either simple or multiple regression, if vy, va.. .., v, 0ccurat
sequential points in time. they are typically correlated. For cases such as these. in which
the assumption cov(y) = o1 is no longer appropriate. we use the model

v=XB+e Ey)=Xp, coviy)=3=daV, (7.62)

where X is full-rank and V is a known positive definite matrix. The usage X = a°V
. ’ - ~ Y . -

permits estimation of ¢~ in some convenient contexts (see Examples 7.8.1 and 7.8.2).

g i - n

[he # x n matrix V has n diagonal elements and ( = ) elements above (or below) the

. - n s :
diagonal. It V were unknown. these (_,) + n distinct elements could not be esti-

mated from a sample of n observations. In certain applications. a simpler structure
for V is assumed that permits estimation. Such structures are illustrated in
Examples 7.8.1 and 7.8.2.

7.8.1 Estimation of B and o when cov(y) = ¢°V

In the following theorem we give estimators of B and o for the model in (7.62).
|
Theorem 7.8a. Let y = X + &, let E(y) = XB. and let cov(y) = cov(e) = oV,
where X is a full-rank matrix and V is a known positive definite matrix. For this
model, we obtain the following results:

(1) The best linear unbiased estimator (BLUE) of B is
B=XVIX)'X'Vly, (7.63)

(i) The covariance matrix for B is

cov(P) = A(X'VIX) L (7.64)
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(iii) An unbiased estimator of o~ is

3 '—X."”il —\’
e (7.65)
n—k—1

n—k—1

(7.66)

where ﬁ is as given by (7.63).

Note that since X is full-rank. X'V "X is positive definite (see Theorem 2.6b). The
estimator B = (X'V'X)"'X'V~'y is usually called the generalized least-squares
estimator. The same estimator is obtained under a normality assumption.

Theorem 7.8b. If'y is N,(XB. 0°V). where X is full-rank and V is a known positive
definite matrix, where X is n x (k + 1) of rank k£ + 1, then the maximum likelihood
estimators for B and o~ are

B=XVIX)IX'v'y,

-~

1 , .
@ =—(y-XB'V'v-Xp.
I

7.8.2 Misspecification of the Error Structure

Suppose that the model is y = X8 + £ with cov(y) = 0®V. as in (7.62). and we mis-
takenly (or deliberately) use the ordinary least-squares estimator B = (X'X) X'y in
(7.6). which we denote here by B° to distinguish it from the BLUE estimator
ﬁz (X'VIX) " IX'V~ly in (7.63). Then the mean vector and covariance matrix

for B are

cov(f) = (X'X) ' X'VX(X'X) . (7.72)

Thus the ordinary least-squares estimators are unbiased. but the covariance matrix
differs from (7.64). Because of Theorem 7.8a(1). the variances of the BJ sin (7.72)
cannot be smaller than the variances in cov( B_! = XX’V 'X) ! in (7.64). This is
illustrated in the following example.
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7.9 MODEL MISSPECIFICATION

In Section 7.8.2, we discussed some consequences ol misspecification of cov(y). We
now consider consequences of misspecification of E(y). As a framework for discus-
sion, let the model y = X + & be partitioned as

v=XB+ &= (X, xl)(g‘ ) +&

2

= XiB, + Xof3s + €. (7.78)

h___ 1 N/ ~ =11 11 />, |
If we leave out X8, when it should be included (i.e.. when B, # 0). we are under-
Siting. 1If we include X5 B, when it should be excluded (i.e.. when B, = 0), we are
overfirting. We discuss the effect of underfitting or overfitting on the bias and the
variance of the ﬁ; v, and 5* values.

We first consider estimation of 8, when underfitting. We write the reduced model as

y=XiBj+¢" (7.79)

using B8] to emphasize that these parameters (and their estimates ) will be different
from B, (and B,) in the fiell model (7.78) (unless the x's are orthogonal; see Corollary
| to Theorem 7.9a and Theorem 7.10). This was illustrated in Example 7.2. In the fol-
lowing theorem. we discuss the bias in the estimator Bl obtained from (7.79) and give

the covariance matrix for B;.

Theorem 7.9a. If we fit the model y = X;B; + & when the correct model is
v =X,8, + XuB, + £ with cov(y) = ¢”1, then the mean vector and covariance
matrix for the least-squares estimator 8 = (X{X;) ' Xy are as follows:

(i) E(B})= B, + AB,. where A = (X! X))~ ' X! X, (7.80)

(i) cov(PB)) :rr-"l.\"XI =3 (7.81)
T I i T T T T Sy
Thus. when underfitting. B is biased by an amount that depends on the values of the x’s
in both X; and X;. The matrix A = (X’, X)) 'X’] Xo in (7.81) 1s called the alias matrix.

Corollary 1. If X|X; = O, that is. if the columns of X; are orthogonal to the
columns of X,, then B is unbiased: E()) = B,. O
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Multiple Regression: Tests of
Hypotheses and Confidence
Intervals

In this chapter we consider hypothesis lests and confidence intervals for the
parameters By. By.- ... By in B in the model y = XB + £. We also provide a confi-
dence interval for o® = var(y;). We will assume throughout the chapter that y is
N,(XB, o*I), where X is n x (k + 1) of rank k + 1 < n.

8.1 TEST OF OVERALL REGRESSION

We noted in Section 7.9 that the problems associated with both overfitting and under-
fitting motivate us to seek an optimal model. Hypothesis testing is a formal tool for,
among other things, choosing between a reduced model and an associated full model.
The hypothesis H,, expresses the reduced model in terms of values of a subset of the
B;'s in B. The alternative hypothesis. H;. is associated with the full model.

To illustrate this tool we begin with a common test, the test of the overall
regression hypothesis that none of the x variables predict y. This hypothesis
(leading to the reduced model) can be expressed as Hy: B, =0. where
B, = (B Bs.---. B:)'. Note that we wish to test Hy: B, = 0, not Hy : B = 0., where

(B
ﬁ‘(&)'

Since By, is usually not zero, we would rarely be interested in including B, = 0'in the
hypothesis. Rejection of Hy: B = 0 might be due solely to ,, and we would not
learn whether the x variables predict v. For a test of Hy: B = 0. see Problem 8.6.
We proceed by proposing a test statistic that is distributed as a central F il Hy 1s true
and as a noncentral /" otherwise. Our approach to obtaining a test statistic is somewhat
L
simplified if we use the centered model (7.32)

o
y =1}, Xo) ) +E,
4 (m

where X, = [I — (1/m)J]X, is the centered matrix [see (7.33)] and X, contains all the
columns of X except the first [see (7.19)]. The corrected total sum of squares
Sy b -

SST = > 1, (; — ¥)* can be partitioned as
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n
> =57 = B Xly + [Z'I (vi =¥ — B, x[_y] by (7.53)]
i=1
= B/X'X.B, + SSE = SSR + SSE [by (7.54)], (8.1)

where SSE is as given in (7.39). The regression sum of squares SSR = B!, X X B is
clearly due to .

In order to construct an F test. we first express the sums of squares in (8.1) as quad-
ratic forms in y so that we can use theorems from Chapter 5 to show that SSR and
SSE have chi-square distributions and are independent. Using . (v; — s
V1= (1/md]y in (5.2), B, = (X'X,)"'X'y in (7.37), and SSE = 31, (v; — ¥)*—
B’,X:._\' in (7.39). we can write (8.1) as

| ,
% (1 = —J)y — SSR + SSE

n

Cw

] I 5> - rf
= VXAX'X,) 'xj._v+_v’(1 ——J)_\' — YX (X X)Xy
: = :
| _
=vy'H,y + y'(l —=J— H,.)y. (8.2)
I

where H, = X.(X!X,)'X.,
In the following theorem we establish some properties of the three matrices of the
quadratic forms in (8.2).

Theorem 8.1a. The matrices1 — (1/n) J, H, = Xo(X/X,)" "X/ and I — (1/n) J — H,
have the following properties:

(i) HJT —(1/n) J] = H,. (8.3)
(ii) H, is idempotent of rank &.
(iti) I —(1/n) 3 — H, is idempotent of rank n —k — I.
(iv) HJI = (1/m) J — H.] = O. (8.4)
= b 1A~ |

The distributions of SSR/a? and SSE/¢? are given in the following theorem.
Theorem 8.1b. If y is N,(XB. o). then SSR/c? = B|X'X.8,/0> and

SSE/o? = [Z;’;l (v — ¥ — B x;xt.B,] /o2 have the following distributions:

(i) SSR/a? is y2(k, Ay). where A} = p/'Ap/20* = BIX/ X B, /207
(ii) SSE/o? is x2(n — &k — 1).
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Theorem 8.1c. If y is N,(Xp. o 21), then SSR and SSE are independent, where SSR
and SSE are defined in (8.1) and (8.2).

Theorem 8.1d. If y is N,(XB. >1). the distribution of

_ SSR/tke*  SSR/k
~ SSE/[(n—k — 1)a?]  SSE/(n—k— 1)

is as follows:
(i) If Hy: By = 01s false. then
F is distributed as F(k, n —k — 1, Ap).

where A, = B1X/X.B, /202
(i) If Hy: B, = 0 is true, then A} = 0 and

F is distributed as F(k,n —k —1).
If Hy : B; = 0 is true. both of the expected mean s‘qu:més in Table 8.1 are equal to

o2, and we expect F o be near 1. If B; # 0. then E(SSR/k) > o2 since XX, is posi-
tive definite, and we expect F to exceed 1. We therefore reject Hy, for large values of F.
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ESTIMATION

In this section, we consider various aspects of estimation of 8 in the non-full-rank
model y = X3+ £. We do not reparameterize or impose side conditions. These
two approaches to estimation are discussed in Sections 12.5 and 12.6, respectively.
Normality of y is not assumed in the present section.

12.2.1 Estimation of 8

Consider the model

y=XpB+ &

where E(y) = XB. cov(y) = oI, and X is n x p of rank k < p < n. [We will say
"X is nx p of rank kK < p < n” to indicate that X is not of full rank: that is,
rank(X) < p and rank(X) <. In some cases, we have Kk < n <p.| In this non-
full-rank model, the p parameters in B are not unique. We now ascertain whether
B can be estimated.

Using least-squares, we seek a value of B that minimizes

e =(y—XBY(y - XPB).
We can expand €' 1o obtain
#e=yy-28X'y+BXXB. (12.10)

which can be differentiated with respect to B and set equal to 0 to produce the familiar
normal equations

X'XB = X'y. (12.11)

Since X is not full rank, X'X has no inverse, and (12.11) does not have a unique
solution. However, X’Xf = X'y has (an infinite number of’) solutions:

Theorem 12.2a. If X is nxp of rank & <p <n, the system of equations
X'XpB = X'y is consistent.

Proor. By Theorem 2.8f, the system is consistent if and only if

X'X(X'X) X'y = Xy, (12.12)
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where (X'X)” is any generalized inverse of X'X. By Theorem 2.8c(iii), X'X
(X'X) X' =X/, and (12.12) therefore holds. (An alternative proof is suggested in
Problem 12.3.) O

Since the normal equations XX = X'y are consistent. a solution is given by
Theorem 2.8d as

B =XX) Xy, (12.13)
A\ 1 I 101\ """ . ~§ 11" 2iM\J 8 — |

where (X'X)™ is any generalized inverse of X'X. For a particular generalized
inverse (X'X) ", the expected value of B is

E(B) = (X'X) X'Ely)
= (X'X) X'Xg. (12.14)

Thus. B is an unbiased estimator of (X'X)”X'Xg. Since (X'X)" X'X # L. Bisnotan
unbiased estimator of B. The expression (X'X)~ X'X is not invariant to the choice of
(X’X) " that is, E(p) is different for each choice of (X'X)". [An implication in
(12.14) is that having selected a value of (X'X) ", we would use that same value of
(X’X)" in repeated sampling.]

Thus, B in (12.13) does not estimate . Next. we inquire as to whether there are
any linear functions of y that are unbiased estimators for the elements of B; that is,
whether there exists a p x n matrix A such that E(Ay) = B. If so, then

B = E(Ay) = E[AXB + £)] = E(AXB) + AE(¢) = AXB.

Since this must hold for all B, we have AX =1, [see (2.44)]. But by Theorem 2.4(i).
rank(AX) < p since the rank of X is less than p. Hence AX cannot be equal to 1, and
there are no linear functions of the observations that yield unbiased estimators for the
elements of .
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Example 12.2.1. Consider the model yj=p+7+eg; i=1,2: j=1,2.3 in
(12.2). The matrix X and the vector B are given in (12.3) as

I 1 0
I 1 0 o
- |11 0 Y
=110 1 = !
1 0 1 &
1} @ 8l
By Theorem 2.2¢(i). we obtain
6 3 3
XX=13 3 0
3 0 3

% . 3 ~arter «
By Corollary 1 to Theorem 2.8b, a generalized inverse of X'X is given by

0 0 0
XXy =(0 1 0
0 0 1

3
|
The vector X'y is given by

M
11 1 1 1\]|'™ ¥

rf \|2
Xy=[|1 1100 0]} = v
00 0 1 1 1 ‘\F' V2.

:\'23

R 3
where y =37 (> 75 vjand yi = 35, v. Then

_ 0 0 0\ /v 0
B=XX)Xy=[0 3 0]|»n |=1|m
00 3 Y2 V2
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Jrors T e 3 . > I -
where ¥, = > 5, v;i/3 = vi./3.

To find E(B). we need E(y;). Since E(€) = 0, we have E(g;) = 0. Then

E(y;) = E( _\',j/3) = %Z: 1 E(yif)
i=1
=137 (E(u+ 7+ ep)=310Gu+37+0)
= i+ 7.
Thus
_ 0
EB) = p+m
K+ T

The same result 1s obtained in (12.14):

EB) = (X'X) X'XpB

= pt+n |. i1
Kt T
L.~ . AT 111 1N\A - & — 72 1V /7010 /7

12.2.2 [Estimable Functions of

Having established that we cannot estimate 8, we next inquire as to whether we can
estimate any linear combination of the 8s, say, A’B. For example, in Section 12.1.1.
we considered the model y;; = w+ 7 + &5, i = 1.2, and found that u, 7y, and 7> in
B = (u. 7. ) are not unique but that the linear function 7, — 7 = (0. I, —1)B is
unique. In order to show that functions such as 71 — 7 can be estimated. we first give
a definition of an estimable function A’B.

A linear function of parameters A'B is said to be estimable if there exists a linear
combination of the observations with an expected value equal to A’B: that is. A’ is
estimable if there exists a vector a such that E(a’y) = A’ﬁ.

In the following theorem we consider three methods for determining whether a
particular linear function A’ is estimable.
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Theorem 12.2b. In the model v = X+ &£. where E(y) =X and X is n x p
of rank k < p < n, the linear function A8 is estimable if and only if any one of
the following equivalent conditions holds:

(i) A’ is a linear combination of the rows of X: that is, there exists a vector a such
that

a X — AP (12.15)

(i) A’ is a linear combination of the rows of X'X or A is a linear combination of
the columns of X’X. that is, there exists a vector r such that

’X'X=A" or XXr=A (12.16)

(iii) A or A’ is such that
X'X(IX'X) A=A or NIXX)XX=A\. (12.17)

where (X'X)™ is any (symmetric) generalized inverse of X'X.
Proor. For (ii) and (iii). we prove the “if”" part. For (i), we prove both it and “only
if.”

(i) If there exists a vector a such that A’ = a’X. then. using this vector a, we have
Ea'y) =aE(y) =a'’Xg = A'B.

Conversely, if A'B is estimable, then there exists a vector a such that
alv) — ! = U — / e 1 1Pe - v oy NoC P
E(a'y) = A'B. Thus a’Xf = A'B. which implies. among other things. that
v ]
aX=A.
NN — =1 - 2 1\ ______J >~ |

(ii) If there exists a solution r for X'Xr = A, then, by defining a = Xr, we obtain
E(a'y) = E'X'y) = YX'E(y)
=rXXB=Xp.

(i) If X'X(X'X)" A = A, then (X'X) " A is a solution to X'Xr = A in part(ii). (For
prool of the converse, see Problem 12.4.) |

We illustrate the use of Theorem 12.2b in the following example.
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Example 12.2.2a. For the model yj=p+7n+e;: i=1.2: j=123 in
Example 12.2.1. the matrix X and the vector B are given as

I 1 0

1 1 0 ”
S ) B
X=110 1| B= :‘

1 0 1 2

10 1

We noted in Section 12.1.1 that 71 — 7> is unique. We now show that 7 — m» =
(0. 1. —1)B = A'Bis estimable. using all three conditions of Theorem 12.2b.

(i) To find a vector a such that a’X=A"= (0,1, —1), consider a’ =
(0,0,1,—1,0,0). which gives

aAX=(0,0,1.-1,0,00X = (1,1.0) — (1,0, 1)
=(0,1.-H=A".
There are many other choices for a. of course, that will vield a’X = A’, for

example a’ = (1.0.0,0,0. — 1) or a’ = (2, —1.0.0. 1, —2). Note that we can
likewise obtain A'B from E(y):

AB=a'XB=4aEy)=(0.,0,1,—1,0,0)E(y)
(E( yii )\
E(y2)
E(vi3)
E(var)
E( v22)

\ E( ¥a3 l/

=E(va)—E(yvy)=p+1n—(u+n)=7—n.

= (0.0, 1, —=1.0,0)

(ii) The matrix X'X is given in Example 12.2.1 as

6 3 3
XX=1[3 3 0
30 3

To find a vector r such that X'Xr=A=(0.1,—1). consider
r=(0, 3, —3), which gives
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6 3 3 ¢ 0
A . 1
XXr=[3 3 0 3= 1]=A
30 3 | =1
3
- ’ - ~ . . =
There are other possible values of r. of course, such as r = (=1, 2, 0)".
(iii) Using the generalized inverse (X'X)~ = diag(0, L. %) given in Example

12.2.1, the product X'X(X'X)" becomes

0 1 1
X'XX'X)" =0 1 0
0 0 1

0O 1 1 0 0
0 1 0 | | = 1 ]

0 0 1 —1 —1
A set of functions A{B. ASB... ., Al B is said to be linearly independent if the
coelficient vectors Aj, Asr..... A, are linearly independent [see (2.40)]. The

number of linearly independent estimable functions is given in the next theorem.

Theorem 12.2¢. In the non-full-rank model y = X 4 &, the number of linearly
independent estimable functions of B is the rank of X.

3 10 \0L_a1F
From Theorem 12.2b(i), we see that X is estimable fori = 1,2, ...,n, where x!
is the ith row of X. Thus every row (element) of X8 is estimable, and X itself can be
said 1o be estimable. Likewise, from Theorem 12.2b(ii). every row (element) of X'X
is estimable. and X"X B is therefore estimable. Conversely. all estimable functions can
be obtained from X or X'Xg:

12.3 ESTIMATORS

12.3.1 Estimators of A’

From Theorem 12.2b(i) and (ii) we have the estimators a’y and r’X'y for A’B. where
a’ and v’ satisfy A" = a’X and A’ = XX, respectively. A third estimator of A’ is
A'B. where B is a solution of X’X8 = X'y. In the following theorem, we discuss
some properties of X'y and A'B. We do not discuss the estimator a’y because it
is not guaranteed to have minimum variance (see Theorem 12.3d).
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Theorem 12.3a. Let A'B be an estimable function of B in the model y = X8 + &.
where E(y) = X and X is 7 x p of rank k < p < n. Let B be any solution to the
normal equations X’.\IB = X'y, and let r be any solution to X'Xr = A. Then the two
estimators A’ and r'X'y have the following properties:

(i) E(N'B)=EX'y)=ANB.
(ii) A’Bis equal to r'X'y for any B or any r.
(iii) A’Band r'X'y are invariant to the choice of 8 or r.

PrOOF
(i) By (12.14)
ENB) = NE(B) = N (X'X) X'XB.
By Theorem 12.2b(iii), A(X'X)"X'X = A’, and E(A’'B) becomes

E(NB)= AB.
By Theorem 12.2b(ii)

Eir'X'y) =r'X'E(y) = X'XB = A'B.

(ii) By Theorem 12.2b(i1), if A’ is estimable. A" = r’X'X for some r. Multiplying

the normal equations X'Xf = X'y by r’ gives
rX'XB = r'Xy.

- riyr
Since X'X = X', we have

AB=rXYy.

(iti) To show that X'y is invariant to the choice of r, let r; and r; be such that
X'Xr; = X'Xr; = A. Then

i X'XB=rXy and rX'Xg =rXy.
|
Since r| X'X = r;X'X. we have r| X'y = r;X'y. It is clear that each is equal to
A’ B. (Fora direct proof that A’ 8 is invariant to the choice of B. see Problem 12.6.)
O

We illustrate the estimators r'X'y and A in the following example.
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Example 12.3.1. The linear function A'B = 7 — 72 was shown (o be estimable in
Example 12.2.2a. To estimate 7, — 7, with X'y, we use ¥’ = (0. ;. —3) from

(_\'II\
Vi2
I 001 1 1%As
Y
PXy=(0.L -9 1 1.1 00 of["
o Wlo Wil A
Vo

!\--v
Vi Va
= 1. % ' — o1 e % =
- (0' 3 3) YL 3 3 =M.~
.“1

A . 3 s o = NS - = NS
where y_ =Y 0 D7) Vi Vi = Z.i:_,]_\;:!f. and y; = yi/3 =} 5, vi/3.
To obtain the same result using A'B. we first find a solution to the normal
equations X'XB = X'y

6 3 3 0 y
3 30 ‘-T| = A
3 0 3 ™ V2

or
6 + 31 +3m=y.

3+ 37 = ¥

35 + 3o =55

The first equation is redundant since it is the sum of the second and third equations.
We can take g to be an arbitrary constant and obtain

- Ol ‘ = : T £ = .
I =3V K=V, — K T2=3N2.— KR =Y — K.

Thus
_ L 0 I
ﬁ =|mn =¥ |+ pl —1
7’1 _\1 — [
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To estimate 7 —7T=(0.1.—=1)B=ANB, we can set =0 1o obtain

B=(0.y,.v) and A'B =¥, — v, . Il we leave g arbiwary, we likewise obtain

i
ANB=@©,1,-1)] v, — @
Yo — ph

=¥, = A= (31— L) =3, — Va- 0

Since B = (X'X)" X'y is not unique for the non-full-rank model y = X8 + & with
cov(y) = o~L. it does not have a unique covariance matrix. However, for a particular
(symmetric) generalized inverse (X'X) . we can use Theorem 3.6d(i) to obtain the
following covariance matrix:

cov(B) = cov[(X'X) X'y]
= (X'X)" X DX[(X'X) |
= (X'X) X'X(X'X)". (12.18)

The expression in (12.18) is not invariant to the choice of (X'X)".
The variance of A’B or of ¥'X'y is given in the following theorem.

Theorem 12.3b. Let A’B be an estimable function in the model v = X8 + &. where
X isn % pof mank & < p < n and cov(y) = oL Let r be any solution to X'Xr = A,
and let B be any solution to X’X8 = X'y. Then the variance of A’B or r'’X'y has the
following properties:

(i) var(r'X'y) = >r'X'Xr = o°r'A.
(i) var(A'B) = 2 A (X'X)" A
(1i1) \-'urlJ\'B) is unique, that is, invariant to the choice of r or (X'X)".
= § 3 L EN\Q Y ¢ 8 °* |
Theorem 12.3c. If A{B and A B are two estimable functions in the model
v =X+ & where X is n x p of rank k < p < n and cov(y) = o°l. the covariance
of their estimators is given by

CoV(A} B. Ay B) = o7r Ay = a7 Ay = 0P AJX'X) " A,

where X'Xr; = Ay and X'Xr> = As.
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Theorem 12.3d. If A’ is an estimable function in the model y = X + £, where X
is n % p of rank £ < p < n. then the estimators :\’E and r'X’y are BLUE.

12.3.2 Estimation of o
By analogy with (7.23), we define

SSE = (y = XB)(y — XB). (12.19)

where B is any solution to the normal equations X'XB = X'y. Two alternative
expressions for SSE are

SSE = y'y — g'Xy, (12.20)

SSE = y'[I — X(X'X) " X'ly. (12.21)

For an estimator of ¢°. we define

2 . 5k (12.22)

=k

3

where 1 is the number of rows of X and k = rank(X).
Two properties of s~ are given in the following theorem.

2 - - -
Theorem 12.3e. For s~ defined in (12.22) for the non-full-rank model. we have the
following properties:

. - 9 2
(1) E(s7) =0
s 4 . 3 ' 3 - /i 5 v v
(i) s= is invariant to the choice of B or to the choice of generalized inverse

(X'X) .

12.3.3 Normal Model

For the non-full-rank model y = X + £. we now assume that
. ’ e A 2
vis NXB, o) or gis N0, o).

With the normality assumption we can obtain maximum likelihood estimators.
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Theorem 12.3f. If y is N,(XB. o°1I). where X is nn x p of rank k < p < n, then the
maximum likelihood estimators for 8 and o7 are given by

B=(X'X) Xy. (12.23)

~ 5
a

Il

] . .
Sy —XBY(y — XB). (12.24)
n

Theorem 12.3g. If y is N,,(XB. o°1I). where X is nn % p of rank k < p < n. then th

maximum likelihood estimators B and s~ (corrected for bias) have the followin
properties:

(i) Bis NJX'X) X'XB. o2(X'X) X'X(X'X) .
(ii) (n — k)?/o is Y — k).
(iii) B and s° are independent.

Theorem 12.3h. If'y is N,(XB. 0 I). where X isn x pofrank k < p < n.and if X'

is an estimable function, then A'B has minimum variance among all unbiased
estimators. O

Theorem 12.7b. Il y is N,(XB.071). where X is nx p of rank k <p < n. if C
is m x p of rank m < k such that CB is a set of m linearly independent estimable
functions. and if B = (X’X) " X'y. then

(i) C(X'X) ' is nonsingular.
(i) CB is Ny[CB. o> CX'X) C'].
(iii) SSH/0? = (CRY[CX'X) C'] 'CB/a? is x(mA). where A= (CB)
[CX'X) ' 'cp/2a”.
(iv) SSE/a” = y'[1 = X(X'X) X'|y/0? is x*(n— k).
(v) SSH and SSE are independent.
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Theorem 12.7¢. Lety be N,(XB.0%I). where X is n x p of rank k < p < 5, and let
C, CB.and B bedefined as in Theorem 12.7b. Then, if Hy : CB = 0 is true, the statistic

- SSH/m
~ SSE/(n — k)
_(CPYICX'X) ' CB/m
1 SSE/(n — k)

(12.46)

is distributed as F(m.n — k).
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